Abstract

The multienzyme cascade has received growing attention to obtain structurally defined glycans in vitro. However, due to poor enzyme stability and low compatibility between glycoenzymes, artificially designed multienzyme pathways to access glycans are often inefficient. Herein, based on the strategy "Modular-Enzymes Assembly by Spatial Segregation" (MASS), we developed a universal immobilization platform to assemble multiple glycoenzymes in compartmentalized MOF particles, inside and outside, significantly reducing the undesired interference and cross-inhibitions. By changing the enzyme modules, a series of glycosyl donor, disaccharides, oligosaccharides, and polysaccharides bearing cofactor regeneration were efficiently prepared. This bioreactor was further successfully applied to the reaction system with high substrate concentration to demonstrate its industrial potential. This robust multienzyme immobilization platform should serve to promote the enzymatic synthesis of more complex glycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.