Abstract

Repetitive control is one control algorithm based on the Internal Model Principle (Francis & Wonham, 1976) and has been widely implemented in various applications. A repetitive control based system has been shown to work well for tracking periodic reference commands or for rejecting periodic disturbances. Although the idea has been verified as early as 1981 (Inoue et al., 1981), a rigorous analysis and synthesis of repetitive controllers for continuous-time systems was not proposed until 1989, by Hara et al. (Hara et al., 1988). Tomizuka et al. (Tomizuka et al., 1989) addressed the analysis and synthesis of discrete-time repetitive controller, considering the fact that digital implementation of a repetitive controller is simpler and more straightforward. Since then, repetitive control has gained popularity in applications where periodic disturbances rejection or repetitive tracking are required, see (Wang et al., 2009; Cuiyan et al., 2004) and the references therein. These include controls of disk drive servo (Tomizuka et al., 1989; Guo, 1997; Moon et al., 1998), hydraulic closed-loop servo for material testing (Srinivasan & Shaw, 1993), vibration suppression (Hillerstrom, 1996), rejection of load disturbances in steel casting process (Manayathara et al., 1996), servo control for a positioning table (Yamada et al., 1999), X-Y table (Tung et al., 1993), noncircular turning process (Alter & Tsao, 1994), motor speed ripple reduction (Godler et al., 1995; Rodriguez et al., 2000), and eccentricity compensation (Garimella & Srinivasan, 1996). In literatures, repetitive controllers are synthesized and operate in time domain, which is in accordance with the fact that models or differential equations of physical systems are mostly derived using time as the independent variable. One of the key steps for designing a repetitive controller is to determine the period, or equivalently, the number of delay taps (q−1, q is the one step advance operator). This can usually be done by analyzing the periodic tracking or disturbance signal using techniques such as fast Fourier transform (FFT). To ensure effectiveness of the design, an underlying assumption is that the frequency constitutions of the periodic tracking or disturbance signal do not vary with respect to time, which corresponds to a stationary or time-invariant frequency spectrum of the signal. This assumption can be satisfied when the design objective is to track a prespecified periodic trajectory. However, it might be violated for disturbance rejection problems where the frequency constitutions of the disturbance are time-varying. For a motion system with rotary components such as gear-train, the disturbances due to gear

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call