Abstract

The mass-loss mechanism in normal K--M giant stars with small variability amplitudes is not yet understood, although they are the majority among red giant stars. We present high-spatial and high-spectral resolution observations of the 2.3 micron CO lines in the M7 giant BK Vir with a spatial resolution of 9.8 mas and a spectral resolution of 12000, using AMBER at the Very Large Telescope Interferometer (VLTI). The angular diameters observed in the CO lines are 12--31% larger than those measured in the continuum. We also detected asymmetry in the CO line-forming region. The data taken 1.5 months apart show possible time variation on a spatial scale of 30 mas (corresponding to 3 x stellar diameter) at the CO band head. Comparison of the observed data with the MARCS photospheric model shows that whereas the observed CO line spectrum can be well reproduced by the model, the angular sizes observed in the CO lines are much larger than predicted by the model. Our model with two additional CO layers above the MARCS photosphere reproduces the observed spectrum and interferometric data in the CO lines simultaneously. This model suggests that the inner CO layer at ~1.2 stellar radii is very dense and warm with a CO column density of ~10^{22} cm^{-2} and temperatures of 1900--2100K, while the outer CO layer at 2.5--3.0 stellar radii is characterized by column densities of 10^{19}--10^{20} cm^{-2} and temperatures of 1500--2100K. Our AMBER observations of BK Vir have spatially resolved the extended molecular outer atmosphere of a normal M giant in the individual CO lines for the first time. The temperatures derived for the CO layers are higher than or equal to the uppermost layer of the MARCS photospheric model, implying the operation of some heating mechanism in the outer atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call