Abstract

Three-dimensional (3D) dynamical properties of fast particles being injected into the void region of a dusty plasma under microgravity conditions have been measured. For that purpose, a stereoscopic camera setup of three cameras has been developed that is able to track and reconstruct the 3D trajectories of individual dust particles. From more than 500 particle trajectories, the force field inside the void region and its influence on particle movement are derived and analyzed in 3D. It is shown that the force field is dominated by forces pointing radially out of the void and that this radial character is reflected in the velocity distributions of particles leaving the void. Furthermore, the structure of the force field is used for measuring the neutral gas friction for the particles inside the void.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.