Abstract

We present an experimental setup developed to perform optical spectroscopy experiments (Raman scattering and photoluminescence measurements) with a micrometer spatial resolution in an extreme environment of low temperature, high magnetic field, and high pressure. This unique experimental setup, to the best of our knowledge, allows us to deeply explore the phase diagram of condensed matter systems by independently tuning these three thermodynamic parameters while monitoring the low-energy excitations (electronic, phononic, or magnetic excitations) to spatially map the Raman scattering response or to investigate objects with low dimensions. We apply this technique to bulk FePS3, a layered antiferromagnet with a Néel temperature of T ≈ 120 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.