Abstract

We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE10, and TE01 modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call