Abstract
ABSTRACT We analyse 1602 microlensing events found in the VISTA Variables in the Via Lactea (VVV) near-infrared (NIR) survey data. We obtain spatially resolved, efficiency-corrected time-scale distributions across the Galactic bulge (|ℓ| < 10°, |b| < 5°), using a Bayesian hierarchical model. Spatially resolved peaks and means of the time-scale distributions, along with their marginal distributions in strips of longitude and latitude, are in agreement at a 1σ level with predictions based on the Besançon model of the Galaxy. We find that the event time-scales in the central bulge fields (|ℓ| < 5°) are on average shorter than the non-central (|ℓ| > 5°) fields, with the average peak of the lognormal time-scale distribution at 23.6 ± 1.9 d for the central fields and 29.0 ± 3.0 d for the non-central fields. Our ability to probe the structure of the bulge with this sample of NIR microlensing events is limited by the VVV survey’s sparse cadence and relatively small number of detected microlensing events compared to dedicated optical surveys. Looking forward to future surveys, we investigate the capability of the Roman telescope to detect spatially resolved asymmetries in the time-scale distributions. We propose two pairs of Roman fields, centred on (ℓ = ±9, 5°, b = −0.125°) and (ℓ = −5°, b = ±1.375°) as good targets to measure the asymmetry in longitude and latitude, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.