Abstract

We introduce a novel technique for measuring spatially resolved photoionization yields of gas-phase ions created in an intense-laser focus. Overcoming the limitations of traditional experiments where the ionization yield is integrated over the entire focal volume, the technique provides precise information on the ionization dynamics over a wide range of intensities between the appearance intensity of the lowest charge state up to relativistic intensities. The new method provides insights into the ionization process beyond the saturation intensity and, at the same time, a precise way for noninvasive, in situ focus diagnostics. We demonstrate these advances for the case of strong-field ionization of argon. The data are analyzed using the Ammosov–Delone–Krainov (ADK) formula (Ammosov et al 1986 Zh. Éksp. Teor. Fiz. 91 2008).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.