Abstract

CuCl thin films grown on (100) Si by thermal evaporation are studied by means of low temperature photoluminescence (PL) and reflectance spectroscopies. Spatially and wavelength resolved room temperature cathodoluminescence (CL) imaging of the surface of the CuCl samples in a scanning electron microscope (SEM) has also been performed. The reflectance spectra are modeled using a dielectric response function with various models involving dead layers and reflected waves in the thin film and the exciton‐polariton structure obtained is compared to other studies of CuCl. The modeling is shown to match the experimental data quite well when a dead layer is included at the air/CuCl and CuCl/Si interfaces. Some inconsistencies between the CL spectra and those measured by PL and reflectance have been observed. The effects of changing the accelerating voltage of the probe from 10 keV to the range 1–5 keV to allow depth analysis of the CL are reported, in order to pinpoint the spatial origin of the CL emission within the thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.