Abstract

A newly developed spectroelectrochemical imaging approach for directly assessing lithium ion insertion energetics and kinetics in mixed-phase, polymorphous MoO3 is reported. Two variants of spectroelectrochemical microscopy were used to monitor insertion dynamics and to follow electrochemically induced phase transformations at specifically identified structural and compositional domains. Cyclovoltoabsorptometric (dOD/dE) measurements carried out in LiClO4/propylene carbonate solutions reveal that the lithium insertion is nonuniform and can be directly correlated with phase-segregated domains comprising alpha-MoO3, beta-MoO3, and intermixed alpha-/beta-MoO3. Lithium insertion is found to proceed by a staging process where each phase displays energetically distinct insertion behaviors. Chronoabsorptometric imaging measurements allow for the simultaneous estimation of lithium diffusion coefficients, ionic conductivities, and lithium capacities at isolated phases within the polymorphous material. The lithium diffusion coefficient and ionic conductivity is largest for domains comprising intermixed alpha-/beta-MoO3, whereas it is smallest at domains consisting of beta-MoO3. The higher diffusion coefficient observed for intermixed alpha-/beta-MoO3 domains is most likely due to larger thermodynamic enhancement factors for the mixed phase domains than for domains consisting of either alpha-MoO3 or beta-MoO3. Estimation of capacity values within each uniquely identified domain reveals that the lithium insertion capacity is about 4 times greater in alpha-MoO3 than in beta-MoO3. The discrepancies between the lithium insertion capacities can be rationalized in terms of lattice oxygen defects, which effectively reduce the number of available lithium insertion sites in beta-MoO3 as compared to alpha-MoO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.