Abstract

Heat transfer in a magnified rotating ribbed channel is studied by means of liquid crystal thermometry. The test section consists of four Plexiglas walls, forming a rectangular cross section, mounted on a large rotating disk together with the complete necessary measurement chain. The investigated wall is equipped with ribs perpendicular to the main flow direction, it is heated in such a way to achieve a uniform heat flux boundary condition. Facing the need of two-dimensional experimental heat transfer data, tets were carried out in order to quantify the convective heat transfer distribution on the wall between two consecutive ribs under rotating conditions. Different Rotation numbers (0, 0.06, 0.11 and 0.17) were tested at a Reynolds number of 15,000. For the selected heat flux and rotation rates, and based on previous aerodynamic and thermal investigations presented in open literature, no effect of buoyancy is expected, while the Coriolis forces play an important role in the determination of heat transfer. The rotating cases were performed in both senses of rotation in order to allow the studied wall to act as both a trailing and a leading side. At the highest Rotation number, the results confirm that heat transfer is enhanced up to 17% along the trailing side compared with the non-rotating case. This is due to the secondary flows and shear layer instability instigated by the Coriolis forces. On the other hand, heat transfer on the leading side is reduced up to 19% at the highest rotation number; this is caused by the stabilization of the shear layer and the contribution of the secondary flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.