Abstract

Spatially resolved near-IR and X-ray imaging of the central region of the Luminous Infrared Galaxy NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [FeII]1.64 \mu m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr$^{-1}$. The apex of the outflowing gas spatially coincides with the strongest [FeII] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in a LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission although not favoured, cannot be ruled out. Outside the AGN, the hard X-ray emission in NGC 5135 appears to be dominated by the hot ISM produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXB. If this scenario is common to U/LIRGs, the hard X-rays would only trace the most compact (< 100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The SFR derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 \mu m and soft X-ray luminosities, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.