Abstract
Nanowires with nanometer-scale gaps are an emerging class of nanomaterials with potential applications in electronics and optics. Here, we demonstrate that the feedback mode of scanning electrochemical microscopy (SECM) allows for spatially resolved detection of a nanogap on the basis of its electrical conductivity. A gapped nanoband is used as a model system to describe a mechanism of a unique feedback effect from a nanogap. Interestingly, both experiments and numerical simulations confirm that a peak current response is obtained when an SECM tip is laterally scanned above an insulating nanogap formed in an unbiased nanoband. On the other hand, no peak current response is expected for a highly conductive nanogap, which must be extremely narrow or filled with highly conductive molecules for efficient electron transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.