Abstract
Raman spectroscopy was used to analyze cellulose nanocrystal (CNC) -polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nano-scale fraction of microcrystalline cellulose) and two of the three composites investigated used maleated PP as a coupling agent. Raman maps, based on cellulose and PP bands at 1098 and 1460 cm(-1), respectively, obtained at 1 μm spatial resolution showed that the CNCs were aggregated to various degrees in the PP matrix. Of the three composites analyzed, two showed clear existence of phase-separated regions: Raman images with strong PP and absent/weak cellulose or vice versa. For the third composite, the situation was slightly improved but a clear transition interface between the PP-abundant and CNC-abundant regions was observed, indicating that the CNC remained poorly dispersed. The spectroscopic approach to investigating spatial distribution of the composite components was helpful in evaluating CNC dispersion in the composite at the microscopic level, which helped explain the relatively modest reinforcement of PP by the CNCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.