Abstract

Abstract The estimation of solar cell efficiency from minority carrier lifetime measurements requires precise and robust lifetime techniques. For multicrystalline wafers and solar cells this brings about the necessity of adequately averaged spatially resolved lifetime measurements. Materials such as e.g. multicrystalline upgraded metallurgical grade silicon frequently feature relatively low lifetimes, high trap densities, and several material parameters (charge carrier mobilities and net dopant concentration) that are not straightforwardly predictable or measurable. As this may substantially compromise conventional lifetime measurements, a lifetime technique which is unaffected by such restrictions is of general interest. We present a lifetime imaging technique based on a calibration of photoluminescence images via quasi-steady-state photoluminescence (QSSPL), which requires no a priori information about material parameters such as carrier mobilities and net dopant concentration. It is virtually unaffected by effects related to reabsorption of luminescence, by optical effects related to a sample's surface morphology, and by trapping. Injection dependence of lifetime is properly taken into account. We further accomplished a substantial upgrade of the hitherto existing sensitivity limit of QSSPL in terms of lifetime, to where average lifetimes down to one microsecond are now reliably measurable – yielding a sensitivity of spatially resolved lifetime well below one microsecond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.