Abstract

We report spatially-resolved and polarized Raman scattering results from a single Si nanowire (NW). Transmission electron microscope images show that the surface morphology of the Si NW varies from smooth to rough along the long axis. As the NW grows, the smooth surface becomes rough because of Au diffusion to the surface, resulting in the formation of facets and stacking faults. Spatially-resolved Raman spectra along the NW long axis reveal variations in tensile strain related to the morphological changes in NW surface. The tensile strain in the top segment of the NW with a smooth surface is greater than that in the bottom segment with a rough surface. Despite the formation of facets and stacking faults, polarized Raman scattering results both from the top and bottom segments of the NW are consistent with the Raman polarization selection rules expected for a cubic crystal. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call