Abstract

Giving rise to both bone and cartilage during development, bone marrow-derived mesenchymal stem cells (hMSC) have the unique capacity to generate the complex tissues of the osteochondral interface. Utilizing a scaffold-free hMSC system, biphasic osteochondral constructs are incorporated with two types of growth factor-releasing microparticles to enable spatially organized differentiation. Gelatin microspheres (GM) releasing transforming growth factor-β1 (TGF-β1) combined with hMSC form the chondrogenic phase. The osteogenic phase contains hMSC only, mineral-coated hydroxyapatite microparticles (MCM), or MCM loaded with bone morphogenetic protein-2 (BMP-2), cultured in medium with or without BMP-2. After 4 weeks, TGF-β1 release from GM within the cartilage phase promotes formation of a glycosaminoglycan- and type II collagen-rich matrix, and has a local inhibitory effect on osteogenesis. In the osteogenic phase, type X collagen and osteopontin are produced in all conditions. However, calcification occurs on the outer edges of the chondrogenic phase in some constructs cultured in media containing BMP-2, and alkaline phosphatase levels are elevated, indicating that BMP-2 releasing MCM provides better control over region-specific differentiation. The production of complex, stem cell-derived osteochondral tissues via incorporated microparticles could enable earlier implantation, potentially improving outcomes in the treatment of osteochondral defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.