Abstract

Calcium (Ca2+) signaling is tightly regulated within a presynaptic bouton. Here, we visualize Ca2+ signals within hippocampal presynaptic boutons using GCaMP8s tagged to synaptobrevin, a synaptic vesicle protein. We identify evoked presynaptic Ca2+ transients (ePreCTs) that derive from synchronized voltage-gated Ca2+ channel openings, spontaneous presynaptic Ca2+ transients (sPreCTs) that originate from ryanodine sensitive Ca2+ stores, and a baseline Ca2+ signal that arises from stochastic voltage-gated Ca2+ channel openings. We find that baseline Ca2+, but not sPreCTs, contributes to spontaneous glutamate release. We employ photobleaching as a use-dependent tool to probe nano-organization of Ca2+ signals and observe that all three occur in non-overlapping domains within the synapse at near-resting conditions. However, increased depolarization induces intermixing of these Ca2+ domains via both local and non-local synaptic vesicle turnover. Our findings reveal nanosegregation of Ca2+ signals within a presynaptic terminal that derive from multiple sources and in turn drive specific modes of neurotransmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.