Abstract

We examine the spatial distribution of rigid-sphere-like particles in a nematic host. Using a continuum model we analyse the conditions necessary for the appearance of a modulated lamellar structure. There is a long-range effective interaction between the particles, which can lead to the formation of superstructures. In general, this interaction includes several contributions: van der Waals-type direct interaction and indirect interaction via the director field distortions. The latter depends on the temperature of the sample, the coupling energy between a colloidal particle and a nematic host, and the particle concentration. This effective interaction controls the spatial structure and the kinetic properties of the system. We obtained the analytical expression for the temperature when the system loses the stability with respect to the modulated structure formation. Typical contours of the diffuse light scattering are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.