Abstract

Photon-counting LiDAR using a two-dimensional (2D) array detector has the advantages of high lateral resolution and fast acquisition speed. The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality. Herein, we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam, and the variation in the quantum efficiency of the detectors in the 2D array. By using a 635 nm peak wavelength and 4 mW average power semiconductor laser, lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method. Compared with the unmodulated method, the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target, with an average signal photon number of 0.006 per pixel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call