Abstract

Possible types of spatially modulated periodic antiferromagnetic structures in a uniaxial rhombohedral multiferroic with BiFeO3 crystal symmetry have been studied depending on the ratio of the uniaxial anisotropy and magnetoelectric interaction parameters. It has been shown that, along with symmetric cycloid antiferromagnetic structures with zero transverse component of the antiferromagnetism vector, there are changes in the antiferromagnetism vector direction with both right and left nonzero components of the antiferromagnetic moment, which are branched from the high-symmetry spatially modulated distribution. These solutions degenerate into a homogeneous state at a critical value of the normalized easy-plane anisotropy parameter. The existence of the found spatially inhomogeneous antiferromagnetic states with an incommensurate period can lead to additional features in magnetoelectric properties in multiferroics of the type under consideration near magnetic phase transitions in electric and magnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call