Abstract

We define a class of random measures, spatially independent martingales, which we view as a natural generalisation of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrised measures $\{\eta_t\}_t$, and show that under some natural checkable conditions, a.s. the total measure of the intersections is Holder continuous as a function of $t$. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Łaba in connection to the restriction problem for fractal measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call