Abstract

GRID therapy is an effective treatment for bulky tumors. Linear accelerator (Linac)-produced photon beams collimated through blocks or multileaf collimators (MLCs) are the most common methods used to deliver this therapy. Utilizing the newest proton delivery method of pencil beam scanning (PBS) can further improve the efficacy of GRID therapy. In this study, we developed a method of delivering GRID therapy using proton PBS, evaluated the dosimetry of this novel technique and applied this method in two clinical cases. In the feasibility study phase, a single PBS proton beam was optimized to heterogeneously irradiate a shallow 20×20×12cm3 target volume centered at a 6cm depth in a water phantom. The beam was constrained to have an identical spot pattern in all layers, creating a "beamlet" at each spot position. Another GRID treatment using PBS was also performed on a deep 15×15×8cm3 target volume centered at a 14cm depth in a water phantom. Dosimetric parameters of both PBS dose distributions were compared with typical photon GRID dose distributions. In the next phase, four patients have been treated at our center with this proton GRID technique. The planning, dosimetry, and measurements for two representative patients are reported. For the shallow phantom target, the depth-dose curve of the PBS plan was uniform within the target (variation <5%) and dropped quickly beyond the target (50% at 12.9cm and 0.5% at 14cm). The lateral profiles of the PBS plan were comparable to those of photon GRID in terms of valley-to-peak ratios. For the deep phantom target, the PBS plan provided smaller valley-to-peak ratios than the photon GRID technique. Pretreatment dose verification QA showed close agreement between the measurements and the plan (pass rate >95% with a gamma index criterion of 3%/3mm). Patients tolerated the treatment well without significant skin toxicity (radiation dermatitis grade ≤1). Proton GRID therapy using a PBS delivery method was successfully developed and implemented clinically. Proton GRID therapy offers many advantages over photon GRID techniques. The use of protons provides a more uniform beamlet dose within the tumor and spares normal tissues located beyond the tumor. This new PBS method will also reduce the dose to proximal organs when treating a deep-seated tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call