Abstract

Surface-enhanced Raman scattering (SERS) is employed to obtain distinctive spectra of compounds that are efficiently separated by capillary electrophoresis (CE) and deposited onto planar SERS-active substrates. A simple method is described that explains how to prepare SERS-active substrates by depositing a silver-colloid solution onto frosted-glass microscope slides, using a high-efficiency nebulizer. Scanning electron micrographs reveal a layered coating of fairly uniform-sized, 100-nm silver nanoparticles with interstitial spaces ranging from a few to tens of nanometers. The on-column separation is monitored by laser-induced fluorescence, while electrofilament depositing the CE effluent onto a moving SERS-substrate. Subsequently, the SERS spectra and off-column electropherograms are obtained with a simple confocal Raman spectrometer. The test compounds used to demonstrate this technique include compounds of biological significance: benzyloxyresorufin, riboflavin, and resorufin. CE and Raman conditions are evaluated to determine their affects on the SERS signals. An average off-column efficiency of 100,000 plates/m and a signal reproducibility of 11% relative standard deviation were achieved. Characteristic spectra with major Raman bands exhibiting signal-to-noise ratios of greater than 3 were obtained for a 3.2-nL injection of 10(-6) M (706 fg) resorufin. Forming a self-assembled monolayer (SAM) on the substrate increases the sensitivity of the SERS technique and decreases the on-substrate broadening. Calibration plots for both plain- and SAM-SERS substrates are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call