Abstract
ABSTRACTIn this paper we propose a novel Bayesian statistical methodology for spatial survival data. Our methodology broadens the definition of the survival, density and hazard functions by explicitly modeling the spatial dependency using direct derivations of these functions and their marginals and conditionals. We also derive spatially dependent likelihood functions. Finally we examine the applications of these derivations with geographically augmented survival distributions in the context of the Louisiana Surveillance, Epidemiology, and End Results registry prostate cancer data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.