Abstract

A novel approach to generate a spatially-distributed orbital angular momentum (OAM) beam array based on coherent combining technology is presented. The arrangement of the multiple fundamental Gaussian beams at the initial plane, as well as the intensity weights and the phase distributions of the array beams, is determined by the reversal of Huygens Fresnel diffraction and the greedy algorithm. This method ensures that a vortex beam array is formed at a specified distance, and the distance can be adjusted by phase modulation. The evolution properties of the synthesized beam array near the receiver plane are studied as well to estimate the robustness of the method. The experimental limitations of this technique are discussed, including the maximum number of beams, the relative separation of each beam and the maximum topological charges. The results illustrate that a spatially-distributed OAM beam array can be effectively generated within a finite distance interval, and the distance is adjustable. This new method enables further applications of a structured optical field, such as optical communication and spatial light structuring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call