Abstract
Transgene-based inducible expression systems offer the potential to study the influence of any gene at any point during an organism's lifetime. However, the expression of individual genes is both temporally and spatially (i.e., cell/tissue)-regulated. The inducible gene expression systems devised to date do not offer fine spatial control over gene expression. We describe herein the creation and study of a light-activatable, ecdysone-inducible gene expression system. We have constructed the first example of a caged ecdysteroid, which is virtually inactive as an inducing agent in a luciferase-based gene expression system. However, upon exposure to brief illumination, the caged ecdysteroid is rapidly converted into active β-ecdysone. Caged β-ecdysone is cell permeable, can be intracellularly photouncaged, and, in combination with spot illumination, can be used to drive spatially discrete protein expression in a multicellular setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.