Abstract

Higher dimensional quantum systems have a very important role to play in quantum information, computation as well as communication. While the polarization degree of freedom of the photon is a common choice for many studies, it is restricted to only two orthogonal states, hence qubits for manipulation. In this paper, we theoretically model as well as experimentally verify a novel scheme of approximating photonic qutrits by modulating the pump beam in a spontaneous parametric down conversion process using a three-slit aperture. The emerging bi-photon fields behave like qutrits and are found to be highly correlated in the spatial degree of freedom and effectively represent spatially correlated qutrits with a Pearson coefficient as high as 0.9. In principle, this system provides us a scalable architecture for generating and experimenting with higher dimensional correlated qudits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call