Abstract
AbstractSpatial synchrony in population dynamics has been documented recently across a range of taxa, and a number of hypotheses about the mechanisms driving spatial synchrony and the consequences of this phenomenon for the persistence of populations have emerged. Spatial environmental covariance is one of the principal factors influencing this synchrony on a large scale. However, most studies focus on population abundances, and little evidence exists on the spatial synchrony of demographic parameters. We used a 15‐year dataset from two populations of a vulnerable bird species, the Dalmatian Pelican (Pelecanus crispus), to identify local and global environmental factors that cause population synchrony. We show that survival rates were temporally synchronised between the studied populations and that a large part (>50 % for both populations) of this covariation was driven by local environmental conditions. Several components of the North Atlantic Oscillation index were correlated with local climatic conditions, but not all of these components can be used as informative proxies for future variation in survival. We also present evidence that an individual's future survival can be strongly influenced by the conditions occurring during the early period of its life. Environmental factors such as water level and food availability had similar influences on breeding success and juvenile survival. Juvenile survival was lower during dry years and years of low food availability. This finding indicated that intra‐specific competition may act as a limiting factor for species demography, especially in large populations. Estimating the strength of synchrony is important and should be considered in population and metapopulation analyses and in relationship to conservation measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.