Abstract
Despite the importance of spatially resolved self-assembly for molecular machines, the spatial control of supramolecular polymerization with synthetic monomers had not been experimentally established. Now, a microfluidic-regulated tandem process of supramolecular polymerization and droplet encapsulation is used to control the position of self-assembled microfibrillar bundles of cyclic peptide nanotubes in water droplets. This method allows the precise preferential localization of fibers either at the interface or into the core of the droplets. UV absorbance, circular dichroism and fluorescence microscopy indicated that the microfluidic control of the stimuli (changes in pH or ionic strength) can be employed to adjust the packing degree and the spatial position of microfibrillar bundles of cyclic peptide nanotubes. Additionally, this spatially organized supramolecular polymerization of peptide nanotubes was applied in the assembly of highly ordered two-dimensional droplet networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.