Abstract

In spite of recent progress of graphene growth using chemical vapor deposition, it is still a challenge to precisely control the nucleation site of graphene for the development of wafer-scale single-crystal graphene. In addition, the postgrowth patterning used for device fabrication deteriorates the quality of graphene. Herein we demonstrate the site-selective nucleation of single-crystal graphene on Cu foil based on spatial control of the local CH4 concentration by a perforated Ni foil. The catalytically active Ni foil acts as a CH4 modulator, resulting in millimeter-scale single-crystal grains at desired positions. The perforated Ni foil also allows to synthesize patterned graphene without any postgrowth processing. Furthermore, the uniformity of monolayer graphene is significantly improved when a plain Ni foil is placed below the Cu. Our findings offer a facile and effective way to control the nucleation of high-quality graphene, meeting the requirements of industrial processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.