Abstract

Recent years have witnessed the progress of lanthanide-doped materials from fundamental material synthesis to targeted practical applications such as optical applications in photodetection, anti-counterfeiting, volumetric display, optical communication, as well as biological imaging. The unique compositions and structures of well-designed lanthanide ion-doped materials could expand and strengthen their application performances. Herein, we report dual-mode luminescent crystalline microrods that spatially confine upconversion and downconversion photophysical process within defined regions using the specially designed heterogeneous structure. Through an epitaxial growth procedure, downconversion tips have been conjugated with the parent upconversion microrods in oriented directions. This spatially confined structure can effectively depress the deleterious energy depletion in lanthanide ions homogeneously doped materials, and as a result, the red, green, and blue upconversion intensities have been enhanced by 334, 225, and 22 times, respectively. Moreover, the induced tips hardly disturb the upconversion process of the microrod seeds. Upon 980 nm laser or ultraviolet lamp excitation, tunable emission colors were realized in the single tip-modified microrod, indicating potential applications of these microrods for high-level dual-mode anti-counterfeiting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.