Abstract

Incorporating homogeneously dispersed metal single atoms or nanoclusters into bulk matrix can produce functional materials for electrochemical catalysis, energy storage, and electronic devices. However, the instability of single metal atoms (or clusters) against agglomeration and thus loss of active surfaces during high-temperature treatment or reactions remains a major challenge. Here, we report the effect of spatial confinement on suppressing migration and coalescence of metal atoms/clusters in solid films made of stacked and/or overlapping (‘reduced’) graphene oxide, resulting in increased stability of dispersed metal (i.e., Cu, Co, Ni) atoms and nanoclusters at high temperature (1000 °C). We find that pressing has a significant impact on the degree of ‘reduction’ of graphene oxide and the morphology and distribution of metals in the films; the presence of metals influences the thermal ‘reduction’ and graphitization of graphene oxide. This work demonstrates the efficacy of externally applied pressure in controlling the reactivity and mobility of metal atoms/clusters in bulk solids, which can be a useful means for preparing a variety of atomic/nano-metal-based hybrid materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.