Abstract
Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.10 ± 0.53nm). The membrane electrode assembly with mesoporous carbon-supported PtSn alloy catalyst achieves a high initial mass activity of 0.85 A at 0.9V, which is attributed to the smallest local oxygen transport resistance (3.68 S m-1) ever reported. The mass activity of the catalyst only decreases by 11% after 30000 cycles of accelerated durability test, representing superior full-cell durability among the reported Pt-based alloy catalysts. The enhanced activity and durability are attributed to the decreased adsorption energy of oxygen intermediates on Pt surface and the strong electronic interaction between Pt and Sn inhibiting Pt dissolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.