Abstract

Signaling networks are spatiotemporally organized in order to sense diverse inputs, process information, and carry out specific cellular tasks. In pancreatic β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback, and this circuit is instrumental in mediating and potentiating pulsatile insulin secretion. Here, we describe a novel mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that nanodomain clustering of Ca2+-sensitive adenylyl cyclases drives oscillations of local cAMP levels within the membrane nanodomain to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintains out-of-phase oscillations within the general plasma membrane, providing a striking example and novel mechanism of cAMP compartmentation. Disruption of this precise in-phase relationship perturbs Ca2+ oscillations, suggesting that the relative phase within an oscillatory circuit can encode specific functional information. This example of a signaling nanodomain utilized for localized tuning of an oscillatory circuit has broad implications for the spatiotemporal coordination of many biological networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.