Abstract

Wireless communication systems employing multiple antennas at both the transmitter and receiver have been shown to offer significant gains over single-antenna systems. Recent studies on the capacity of multiple-input-multiple-output (MIMO) channels have focused on the effect of spatial correlation. The joint effect of spatial and temporal correlation has not been well studied. In this paper, a geometric MIMO channel model is presented, which considers motion of the receiver and nonisotropic scattering at both ends of the radio link. A joint space-time cross-correlation function is derived from this model and variates with this joint correlation are generated by using the vector autoregressive stochastic model. The outage capacity of this channel is considered where the effects of antenna spacing, antenna array angle, degree of nonisotropic scattering, and receiver motion are investigated. When n transmit and n receive antennas are employed, it is shown that the outage capacity still increases linearly with respect to n, despite the presence of spatial and temporal correlation. Furthermore, analytical expressions are derived for the ergodic capacity of a MIMO channel for the cases of spatial correlation at one end and at both ends of the radio link. The latter case does not lend itself to numerical evaluation, but the former case is shown to be accurate by comparison with simulation results. The proposed analysis is very general, as it is based on the transmit and receive antenna correlations matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call