Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ∼60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1flox/flox mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ∼70% of Nf1+/− mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1flox/null mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/− mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/− stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.

Highlights

  • Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive subtype of soft-tissue sarcoma that develops in association with peripheral nerves or nerve roots

  • To generate a model in which temporal control of the transforming genetic alteration can be achieved in a single nerve location, we employed two genetically-engineered mouse (GEM) strains in which Cre-mediated Nf1 inactivation occurs in Schwann cell precursor cells during embryogenesis and p53 knockdown is somatically acquired at 6-8 weeks of age in cells within the right sciatic nerve

  • Leveraging whole exome sequencing methodologies, a recent study from our laboratory revealed a temporal sequence of genetic changes in a single patient with progression of an Neurofibromatosis type 1 (NF1)-associated plexiform neurofibroma to MPNST over a 14-year period

Read more

Summary

Introduction

MPNSTs are an aggressive subtype of soft-tissue sarcoma that develops in association with peripheral nerves or nerve roots. To generate a model in which temporal control of the transforming genetic alteration can be achieved in a single nerve location, we employed two GEM strains in which Cre-mediated Nf1 inactivation occurs in Schwann cell precursor cells during embryogenesis and p53 knockdown is somatically acquired at 6-8 weeks of age in cells within the right sciatic nerve.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.