Abstract

This paper combines the infrared lock-in thermography (IR-LIT) and heterodyne excitation techniques to detect high-frequency capacitive currents due to intradie electrical coupling between microelectronic devices or more complex systems. Modulating the excitation with the heterodyne approach, we drive devices or complex systems with high frequency electrical signals in such a way that they behave as low frequency heat sources, modulating their temperature field at a frequency detectable by an IR-LIT system. This approach is analytically studied and extended to a bi-dimensional scenario, showing that the thermal information at low frequency depends on the electrical characteristics of the sample at high frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call