Abstract

Low or uneven luminance results in low contrast of near-infrared and optical remote sensing images, making it challenging to analyze their contents. Traditional image enhancement methods cannot simultaneously take detail preservation, contrast enhancement, and brightness improvement into account. In order to cope with this problem, this paper proposes a spatially adaptive multi-scale image enhancement (SAMSIE) scheme, including three key procedures: First, nonsubsampled contourlet transform (NSCT) is employed to decompose a low-contrast image into multi-scale layers. Second, a spatially adaptive Gamma correction strategy based on improved histogram equalization is proposed to enhance the base layer which is used as a guide layer. Third, an adaptive enhancement operator is proposed to enhance fine details. Finally, a high-contrast optical infrared image is obtained by the inverse NSCT with usage of these enhanced layers. The effectiveness of the proposed SAMSIE method is validated by both visualization assess and the evaluation of three quantitative indexes including discrete entropy (DE), contrast gain (CG), and mean brightness improvement (MBI), with comparison of the state-of-the-arts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call