Abstract
The first part of the paper presents a generalization of the well-known Baire category theorem. The generalization consists in replacing the dense open sets of the original formulation by dense UCO sets, where UCO means union of closed and open. This topological theorem is exactly what is needed to prove in the second part of the paper the locale-theoretic result that locales whose frame of opens has a countable presentation (countably many generators and countably many relations) are spatial. This spatiality theorem does not require choice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.