Abstract
The rapid development of spatial transcriptomics (ST) technologies has enabled transcriptome-wide profiling of gene expression in tissue sections. Despite the emergence of single-cell resolution platforms, most ST sequencing studies still operate at a multi-cell resolution. Consequently, deconvolution of cell identities within the spatial spots has become imperative for characterizing cell type-specific spatial organization. To this end, we developed SpatialDeX, a regression model-based method for estimating cell type proportions in tumor ST spots. SpatialDeX exhibited comparable performance to reference-based methods and outperformed other reference-free methods with simulated ST data. Using experimental ST data, SpatialDeX demonstrated superior performance compared with both reference-based and reference-free approaches. Additionally, a pan-cancer clustering analysis on tumor spots identified by SpatialDeX unveiled distinct tumor progression mechanisms both within and across diverse cancer types. Overall, SpatialDeX is a valuable tool for unraveling the spatial cellular organization of tissues from ST data without requiring scRNA-seq references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.