Abstract
This letter presents a novel spatial-attraction-based Markov random field (MRF) (SAMRF) approach for high spatial resolution multispectral imagery (HSRMI) classification. First, the initial class label and class membership for each pixel are obtained by applying the maximum likelihood classifier (MLC) classification for the HSRMI. Second, to reduce the oversmooth classification in the traditional MRF, an adaptive weight MRF model is introduced by integrating the spatial attraction model into the traditional MRF. Finally, the initial classification map, generated in the first step, will be refined though the SAMRF regularization. Two different experiments were performed to evaluate the performance of the SAMRF, in comparison with standard MLC and MRF. Experimental results indicate that the SAMRF method achieved the highest accuracy, hence, providing an effective spectral-spatial classification method for the HSRMI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.