Abstract

Structured illumination microscopy (SIM) achieves superresolution in fluorescence imaging through patterned illumination and computational image reconstruction, yet current methods require bulky, costly modulation optics and high-precision optical alignment, thus hindering the widespread implementation of SIM. To address this challenge, this work demonstrates how nano-optical metasurfaces, rationally designed to tailor the far-field optical wavefront at sub-wavelength dimensions, hold great potential as ultrathin, single-surface, all-optical wavefront modulators for SIM. We computationally demonstrate this principle with a multipolar-resonant metasurface composed of silicon nanostructures that generate versatile optical wavefronts in the far field upon variation of the polarization or angle of incident light. Algorithmic optimization is performed to identify the seven most suitable illumination patterns for SIM generated by the metasurface based on three key criteria. We quantitatively demonstrate that multipolar-resonant metasurface SIM (mrm-SIM) achieves resolution gain that is comparable to conventional methods by applying the seven optimal metasurface-generated wavefronts to simulated fluorescent objects and reconstructing the objects using proximal gradient descent. Notably, we show that mrm-SIM achieves these resolution gains with a far-field illumination pattern that circumvents complex equipment and alignment requirements of comparable methodologies. The work presented here paves the way for a metasurface-enabled experimental simplification of structured illumination microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call