Abstract

Plasmonic resonators can be designed to support spectrally well-separated discrete modes. The associated characteristic spatial patterns of intense electromagnetic hot-spots can be exploited to enhance light-matter interaction. Here, we study the local field dynamics of individual hot-spots within a nanoslit resonator by detecting characteristic changes of the photoelectron emission signal on a scale of ∼12 nm using time-resolved photoemission electron microscopy (TR-PEEM) and by excitation with the output from a 20 fs, 1 MHz noncollinear optical parametric amplifier (NOPA). Surprisingly, we detect apparent spatial variations of the Q-factor and resonance frequency that are commonly considered to be global properties for a single mode. By using the concept of quasinormal modes we explain these local differences by crosstalk of adjacent resonator modes. Our findings are important in view of time-domain studies of plasmon-mediated strong light-matter coupling at ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.