Abstract

Ground ice is a distinctive feature of permafrost, and its thawing under climate change can alter the regional hydrological and biogeochemical cycles. Spatial variations and determinants of ground ice isotopes are critical to understand subsurface water cycling during freeze-thaw process in the context of climate change, while they are not well known in permafrost region due to lack of field investigation. We examined spatial distributions and controlling factors of ground ice isotopes using data of 8 soil profiles surveyed in permafrost areas of the Qinghai-Tibet Plateau (QTP). The stable isotope values (δ2H and δ18O) of subsurface water on the QTP were higher than those in Arctic tundra ecosystem and East Siberian permafrost region. Isotopic values of water components differed each other, and varied significantly among the sampling sites. The spatial distribution of isotopes was complex. Isotopes generally decreased with depth within the soil profile, implying a general isotope depth gradient across different permafrost-affected areas. Water source, evaporative and freeze-out fractionation, and cryoturbation affect soil water isotopes. Correlation analyses showed that δ2H and δ18O in soil water positively related to air temperature and soil temperature, while negatively related to soil moisture, depth, active layer thickness, vegetation coverage, elevation, and precipitation. Elevation and soil depth mainly controlled spatial distributions of ground ice isotopes. The results could provide a new insight into soil moisture movement and cycling during freeze-thaw process in the permafrost region of the QTP, which is helpful to understand subsurface water cycle mechanism in the context of permafrost degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.