Abstract

This study addresses the topic of the spatial variation of seismic ground motions as evaluated from data recorded at dense instrument arrays. It concentrates on the stochastic description of the spatial variation, and focuses on spatial coherency. The estimation of coherency from recorded data and its interpretation are presented. Some empirical and semi-empirical coherency models are described, and their validity and limitations in terms of physical causes discussed. An alternative approach that views the spatial variation of seismic motions as deviations in amplitudes and phases of the recorded data around a coherent approximation of the seismic motions is described. Simulation techniques for the generation of artificial spatially variable seismic ground motions are also presented and compared. The effect of coherency on the seismic response of extended structures is highlighted. This review article includes 133 references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call