Abstract

The number of ultrafine particles may be a more health relevant characteristic of ambient particulate matter than the conventionally measured mass. Epidemiological time series studies typically use a central site to characterize human exposure to outdoor air pollution. There is currently very limited information how well measurements at a central site reflect temporal and spatial variation across an urban area for particle number concentrations (PNC). The main objective of the study was to assess the spatial variation of PNC compared to the mass concentration of particles with diameter less than 10 or 2.5 μm (PM 10 and PM 2.5). Continuous measurements of PM 10, PM 2.5, PNC and soot concentrations were conducted at a central site during October 2002–March 2004 in four cities spread over Europe (Amsterdam, Athens, Birmingham and Helsinki). The same measurements were conducted directly outside 152 homes spread over the metropolitan areas. Each home was monitored during 1 week. We assessed the temporal correlation and the variability of absolute concentrations. For all particle indices, including particle number, temporal correlation of 24-h average concentrations was high. The median correlation for PNC per city ranged between 0.67 and 0.76. For PM 2.5 median correlation ranged between 0.79 and 0.98. The median correlation for hourly average PNC was lower (range 0.56–0.66). Absolute concentration levels varied substantially more within cities for PNC and coarse particles than for PM 2.5. Measurements at the central site reflected the temporal variation of 24-h average concentrations for all particle indices at the selected homes across the urban area. A central site could not assess absolute concentrations across the urban areas for particle number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.