Abstract

The combination of well-documented liquefaction response during the Darfield and Christchurch, New Zealand, earthquakes, densely-recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to investigate the significance of the spatial variation of magnitude scaling factors (MSF) on liquefaction triggering. Towards this end, MSF were computed at 15 SMS sites across Christchurch and its surroundings using two established approaches. Trends in the spatial variation of the MSF computed using number of equivalent cycles (neq) from both approaches were similar, with the spatial variation being more significant for the Christchurch earthquake than the Darfield earthquake. However, there was no consistent trend for regions with lower computed MSF having experienced more severe or widespread liquefaction. Additionally, there is a general correlation between MSF and amax, but because amax ranges more widely than MSF it has a greater influence on the resulting seismic demand imposed on the soil than MSF does. Nevertheless, the spatial variation of the MSF is deemed significant enough that it warrants being considered for incorporation into future variants of simplified liquefaction evaluation procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.