Abstract

In recent years, environmental factors, particularly humidity, have been used to inform influenza prediction models. This study aims to quantify the relationship between humidity and influenza incidence at the state‐level in the contiguous United States. Piecewise segmented regressions were performed on specific humidity data from NASA's Atmospheric Infrared Sounder (AIRS) and incident influenza estimates from Google Flu Trends to identify threshold values of humidity that signal the onset of an influenza outbreak. Our results suggest that influenza incidence increases after reaching a humidity threshold that is state‐specific. A linear regression showed that the state‐specific thresholds were associated with annual average humidity conditions (R 2 = 0.9). Threshold values statistically significantly varied by region (F‐statistic = 8.274, p < 0.001) and of their 36 pairwise combinations, 13 pairs had at least marginally statistically significant differences in their means. All of the significant comparisons included either the South or Southeast region, which had higher humidity threshold values. Results from this study improve our understanding of the significance of humidity in the transmission of influenza and reinforce the need for local and regional conditions to be considered in this relationship. Ultimately this could help researchers to produce more accurate forecasts of seasonal influenza onset and provide health officials with better information prior to outbreaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.