Abstract

Reef-associated fishes can respond to changes in habitat structure and the nature of their response can change with different spatial scales of observation. A structured hierarchical mensurative sampling design was used to sample temperate reef fish assemblages in northeastern New Zealand at several spatial scales over 2 years. The three spatial scales examined were tens of meters (transects), hundreds to thousands of meters (sites) and hundreds of kilometers (locations). We tested the hypothesis that fish assemblages differed between kelp forest habitat (relatively dense stands of the kelp, Ecklonia radiata (C. Agardh) J. Agardh, median depth=13.5 m) and barrens habitat (rocky reef dominated by turfing and encrusting red algae and the grazing urchin, Evechinus chloroticus (Valenciennes), median depth=6.7 m). Recently developed multivariate techniques were used to test for and quantify multivariate variation at different spatial scales. There were significant effects of habitat on the spatial distribution of fish assemblages, characterised by greater abundances or frequencies of Parika scaber, Chromis dispilus, Trachurus novaezelandiae, Nemadactylus douglasii, Bodianus unimaculatus, Odax pullus and Pseudolabrus miles in kelp forest habitat, and greater abundances or frequencies of Notolabrus celidotus, Notolabrus fucicola, Girella tricuspidata, Coris sandageri, Chironemus marmoratus, Parma alboscapularis, Scorpis violaceus and Kyphosus sydneyanus in barrens habitat. Some of the more common species, including Upeneichthys lineatus, Scorpis lineolatus and Cheilodactylus spectabilis showed no strong consistent effects of these two differing habitats on their distributions. There was, however, a significant Habitat×Locations interaction: effects of habitat did not occur at all locations. Variability was highest at the scale of individual transects and variability from site to site and from location to location was comparable. Spatial variation was large compared to inter-annual variation, which was minimal, and spatial patterns were consistent in the 2 years examined. Further experiments, including manipulations, are required to understand what mechanisms and processes might be driving these patterns. This study, coupled with results from previous studies, suggests that there may be a dynamic inter-play between effects of habitat on fish and effects of fish on biogenic habitat, such as kelp forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call